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V iolinmakers have long relied on rulers, 
calipers, and gauges to measure the 
dimensions of their instruments, but 

until recently the only widely available tool 
related to violin sound was the tuning fork. 
Although the mathematical basis for analyz-
ing sound has been understood since the early 
1800s, it was the development of digital comput-
ers that made the extraordinarily burdensome 
calculations feasible and eventually trivial. The 
current availability of sound recording and 
measurement equipment makes it possible for a 
violinmaker to assemble a measurement system 
for about the price of a good new violin bow. 

The system presented here is loosely based on 
one developed by Martin Schleske and described 
in his paper ÒEmpirical tools in contemporary 
violin makingÓ [1]. It was further developed for 
convenience and portability and as a possible 
standardized approach to making radiation 
measurements in a workshop setting. Using it in 
a meaningful way requires a working familiarity 
with the relevant hardware and software and 
with the basics of musical acoustics and signal 
analysis. This article attempts to bring together 
enough information to give violinmakers a sense 
of whether a measurement system would be 
useful in their own work, and if so, how to put 
together the necessary equipment and then begin 
using it. 
 

MEA SUR IN G V I OL IN  SOUN D 

Measuring a violinÕs sound output in a plausible 
way involves: 

¥ Mounting the instrument; 
¥ Exciting the instrument across its frequency 

range;
¥ Recording the resulting sounds; 
¥ Comparing these sounds with the excita-

tion forces in order to calculate an impulse 
response or a frequency response function; 

¥ Accounting for the violinÕs increasingly direc-
tional radiation patterns for frequencies >850 
Hz; 

¥ Dealing with random noise; 
¥ Accounting for the acoustics of the measure-

ment room;
¥ Calibrating the equipment.

Except for calibration, each of the above is 
addressed in this article. Also, some of the back-
ground concepts, including frequency response 
and Fourier analysis, are discussed. 

A  MEA SURE M EN T RI G

Figure 1 shows a rig designed for measuring 
both violins and violas. The distance between 
the microphone and the central axis of the 
instrument (here defined as a vertical line rising 
through the endpin and parallel with the plane of 
the top plate) can be varied from 5 to 55 cm. The 
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instrument can be rotated 360¡ with respect to 
the microphone, and the microphone and instru-
ment can together be rotated 360¡ with respect 
to the room. A 3-axis positioning stage enables 
precise positioning of the hammer in relation 
to the bridge. A photographerÕs cable release 
allows triggering of the hammer (Fig. 2) with 
one hand while operating a computer with the 
other. The rig is mounted on a speaker stand or 
camera tripod, using a standard !Ó or 3/8Ó stud. 
To facilitate measurements in concert halls and 
other places where good instruments are likely to 
be found, the entire apparatus can be dismantled 
(Fig. 3) and fitted into a standard carry-on bag. 
Appendix A lists the associated hardware. 

Much the same measurements can be made 
using a hand-held hammer, an ordinary micro-
phone stand, and a simple frame from which to 
suspend the instrument. The advantages of a spe-
cialized rig are mainly speed and convenience. 
In my experience, if an instrument cannot be 
mounted and measured within minutes, it will 
not get measured at all. Such a rig also offers the 

possibility of a standardized approach, allowing 
makers and researchers using similar equipment 
to more meaningfully compare results.

MOU N T IN G T H E I NSTRU M EN T 

Measuring a violinÕs radiation requires a mount-
ing system that is stable, holds the instrument 
securely, and yet modifies the instrumentÕs 
dynamic behavior as little as possible. When a 
player holds an instrument, the contact inevi-
tably has its effectsÑprincipally by adding 
damping. Rather than trying to reproduce this 
situation in a measurement system, violins are 
typically mounted with as little outside con-
tact as possibleÑas if floating freely in space. 
One way of implementing this is to suspend 
the instrument from fine elastic bands. Longer, 
looser bands provide better isolation, but the 
instrument then tends to bob and weave, mak-
ing it difficult to fix its position relative to the 
test equipment. A reasonable compromise is 
shown in Fig. 4. The instrument is supported 
from underneath by elastic bands (the kind com-
monly sold for tying ponytails) on either side of 
the endpin, and then about two-thirds of the way 
up the neck.

D A MPIN G T H E STRIN GS

The strings can be damped or undamped during 
measurementÑeach provides somewhat differ-
ent information. Undamped strings show up as 
a series of sharp peaks and adjoining valleys in 
the instrumentÕs response curve, and these can 
obscure the peaks associated with the violin 
body. Damping the strings will to a large extent 

Figure 1. Sound Radiation Measurement Rig, designed 
by Joseph Curtin and furniture designer Garry Venable. 
For more information, see <www.josephcurtinstudios.
com>.

Figure 2. Impact hammer mounting. 
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remove the string features, but will also add a 
measure of damping to the whole instrument. 

The strings can be damped with a business 
card or with bits of foam (Fig. 5). I have found 
that the exact position of the card or foam along 
the string length can affect the measurements 
to a surprising degreeÑparticularly the B1 
peaksÑso it is often worthwhile to try a couple 
of positions. The string length between bridge 
and tailpiece can also be damped. 

D RIVIN G T H E BRI DGE

Systems for measuring violin sound differ dra-
matically in how the instrument is set into 
vibration, and everything from violinists to elec-
tromagnetic bridge drivers have been employed. 
Each system has its advantages and disad-
vantages. Violinists, for example, are ideal in 
terms of the naturalness of their approach, but 
they fall down badly in terms of consistency; 
furthermore, they tend to alter their playing to 
suit the particular instrument being tested. This 
would not be a problem if there were a sensor 
capable of measuring the force of the vibrating 
strings against the bridge while the instrument 
was being playedÑand without mass-loading 
the bridge or otherwise disturbing its normal 
function. As it is, some sort of bridge-driver is 
typically used. Ideally, it should:

¥ Be capable of getting a substantial amount of 
sound from the instrument, ensuring a good 
signal-to-noise ratio; 

¥ Contain a sensor that accurately monitors the 
changing force exerted at the bridge; 

¥ Not couple significant amounts of mass to the 

Figure 4. The instrument is supported at either side of the endpin and neck by elastic bands.

Figure 3. Components of disassembled test rig.
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bridge. Mass-loading mutes the sound and 
therefore skews the results. So sensitive is the 
bridge that as little as 0.1 g attached to the top 
of the bridge will create an audible and mea-
surable difference; 

¥ Excite the instrument more-or-less evenly across 
its frequency range. A fair bit of unevenness 
can be accommodated by the analysis process, 
but only if the minimum excitation level stays 
well above the level of ambient noise. 

Electromagnetic or mechanical bridge-driv-
ers are typically fed with computer-generated 
signals. These can take the form of a sinewave, 
swept across the frequency range in a kind of 
continuous glissando. Alternatively, a mixture of 
all frequencies, such as white noise, can be used. 
A third approach, known as impulse excitation, 
delivers all frequencies at once in the form of 
a sudden blow. This is most conveniently done 
with an impact hammer (also known as a force 
hammer or instrumentation hammer), which 
differs from a carpenterÕs hammer mainly by vir-
tue of a piezo force sensor embedded in its head. 
Impact hammers weighing anywhere from a few 
grams to several kilograms have been used for 
testing everything from printed circuit boards to 
airplanes. A hammer that is well suited to violin 
research is the smallest model made by PCB 
Piezotronics (Model 086C80, pictured in Fig. 2). 

For our purposes, impact hammers have a 
number of advantages: They are off-the-shelf 
tools with long working lives and can be used 
for many other measurements, including bridge 
admittance and modal analysis. Mass loading 
is negligible. An impact lasts only a fraction of 
a second, and so measurement cycles tend to be 
faster than with other methods. A disadvantage 
is that relatively little energy is delivered with 
each blow, so care must be taken to achieve a 
good signal-to-noise ratio. 

M IC ROPH ON ES 

A microphone is a transducer that converts 
rapid fluctuations in air pressure into an electri-
cal signal. Most sound measurement systems 
rely on one or more of themÑan exception 
being WeinreichÕs reciprocal method [2]. For our 
purposes, a relatively flat response across the 
violinÕs frequency range is important. While this 
is not difficult to find in a microphone today, 
some models are designed to add ÒpresenceÓ or 
ÒwarmthÓ to the human voice, or to otherwise 
color the sound, and these should be avoided. 
There are many inexpensive microphones that 
are quite flat enough for good violin measure-
ments. 

Most good quality microphonesÑor at least 
those labeled ÒcondenserÓÑrequire phantom 

Figure 5. Damping the strings with a business card and bits of foam.
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power. This is usually provided by the pre-amp 
or audio interface (see Appendix A). Calibrated 
microphones come with individually measured 
response curves, which were useful when mak-
ing measurements in absolute rather than rela-
tive terms.

Microphones are available with a variety of 
directional properties. Omnidirectional models 
pick up sound equally well in all directions, while 
ÒshotgunÓ microphones are highly directional. 
Omnis are usually preferred for measurement 
purposes since they have the flattest frequency 
response. But directional microphonesÑin par-
ticular, cardioid modelsÑare useful in relatively 
noisy conditions. Cardioids have two trade-offs: 
their off-axis frequency response is not flat, and 
their bass response tends to fall off at a distance. 
I have found that as long as the microphone 
is pointed directly at the violin, the off-axis 
response is not a significant problem, at least 
with the cardioid microphone I use (see Appen-
dix A). With this microphone, the bass is flat at 
~15 cm, but by 1 m it is down 5.5 dB at 100 Hz. 
Since I use a microphone distance between 20 
and 37 cm, and since violins and violas radiate 
very little below ~200 Hz, this does not present 
a problem. Figure 6 compares measurements 
done with cardioid and omni microphones (both 
made by Earthworks) at 37 cm. Note the some-
what smoother line with the cardioid, which 
picks up fewer room reflections. 

DI GI TAL RECORD IN G

Almost all sound recording and processing is 
now done digitally. The signal from a micro-
phone or other source is converted into a series 
of samples, each of which represents the ampli-
tude of the signal at a particular instant in time. 
The fidelity of the sampled signal to the original 
depends largely on two factors: sampling rate 
and sampling depth (also known as sampling 
precision). 

Sampling rate is the number of samples tak-
en per second. The standard rate for commercial 
audio CDs, for example, is 44.1 kHz. The sam-
pling rate places a limit on the highest frequency 
that can be captured. This high-frequency limit, 
known as the Nyquist frequency, is exactly half 
the sampling rate (e.g., 22.05 kHz for CDs). In 
order to prevent the introduction of artifacts 

into the digitized signal, all frequencies above the 
limit must be filtered out before the signal is digi-
tized. Because analog filters have a more-or-less 
gradual cut-off rate, the actual high-frequency 
limit is somewhat lower than the Nyquist fre-
quency. Most sound cards automatically apply 
the appropriate filtering when the sampling rate 
is specified. Good sound cards typically support 
a number of sampling rates, including 44.1 kHz, 
48 kHz, 96 kHz, and even higher. 

Sampling depth refers to the number of 
digits assigned to each sample. This in turn 
determines the number of discrete amplitude 
levels that can be represented. Because comput-
ers work with binary numbers, sampling depth 
is specified by the number of bits (binary digits) 
usedÑand this increases by powers of two. Four 
bits allow 16 discrete amplitude levels; eight bits 
allow 256, and 16 bitsÑthe standard for music 
CDsÑallow 65,536. Sampling depth therefore 
determines the dynamic range, and this is espe-
cially important in capturing a gradual diminu -
endo. Imagine a low note struck and held on a 
piano. Using four-bit sampling, the note would 
be rendered as a bumpy, 16-step journey into 
silence. Much professional audio recording is 
now done at 24 bits, allowing 16,777,216 levels. 
Expressed as dynamic range, this is nearly 17 
million to one. Although adequate for almost 
any conceivable music application, consider that 
the ear has a dynamic range (from the threshold 
of hearing to the threshold of pain) of something 
like 10 trillion to one! 

Practically speaking, the impact hammer 
method described in this article is not likely to 
yield useful data above 10,000 Hz, and so a 44.1 
kHz sampling rate is more than adequate. For 
the typical signal-to-noise ratios encountered, 
using anything beyond 16-bit recording is argu-
ably only digitizing noise. That said, 48 kHz 
sampling at 24 bits is now the norm for pro-au-
dio equipment. Although the increased sampling 
rate and depth create larger files, that is hardly 
a problem for violin measurements, given the 
enormous storage capacity now found on even 
the smallest computers. 

SOUN D AN ALY SIS 

In everyday life, the term spectrum is commonly 
associated with light. Our eyes perceive differ-



191

J. Violin Soc. Am.: VSA Papers  ¥  Summer 2009  ¥  Vol. XXII, No. 1

ent frequencies of light in terms of colorÑwhite 
light being an equal mixture of all frequencies 
within the visible range. A prism is a spectrum 
analyzer in that it separates a beam of light into 
its color components. The analysis is reversible, 
since the beam can be reassembled by passing 
the spectrum through a second prism. 

The 19th-century scientist Hermann Helm-
holtz devised a simple spectrum analyzer for 
sound using a series of resonators tuned to a 
closely spaced series of frequencies. By listening 
to a sound through each of the resonators and 
noting which ones responded, he could list the 
Òfrequency componentsÓ of the sound. We now 
know that the human ear works in a similar way: 
tiny hairs in the inner ear respond selectively to 
narrow bands of frequencies. The brain then 
ÒsharpensÓ this rather crude analysis to achieve 
the remarkable pitch discrimination of which we 
are at best capable. 

Analyzing a musical sound in terms of its 
frequency components might seem a fairly natu-
ral thing to do, since a musical sound usually has 
pitch, and therefore at least one frequency asso-
ciated with it. But what does it mean to speak of 
the frequency components of a brief, non-musi-
cal sound of no discernable pitchÑfor example, 
the resonant thud made by tapping a violin 
bridge with a tiny hammer? Before answering 
this, it is useful to review some terminology. 

A waveform is a graphic or numerical repre-
sentation of a wave. By extension, anything that 
varies over time in a quantifiable wayÑfrom 
barometric pressure to stock market valuesÑ
can be plotted as a waveform. 

A periodic waveform is one that repeats 
itself at regular intervals. The waveform can be 
of any finite length. 

A period is the time required for a single 
iteration of a periodic waveform. Period is the 
reciprocal of frequencyÑthus the period of con-
cert A is 1/440 of a second. 

As it turns out, any soundÑor more pre-
cisely, any waveformÑcan be completely char-
acterized by a set of frequency components. 
The mathematical foundation for doing this 
was developed in the early 1800s by the French 
engineer Jean Baptiste Fourier. In his honor, the 
frequency components are often referred to as 
Fourier components and the whole process as 
Fourier analysis. Fourier analysis allows any 

waveform to be converted into a series of fre-
quency components. Furthermore:

¥ Each frequency component is a sinusoid, and 
can be completely described by its frequency, 
amplitude, and phase;

¥ If the waveform is periodic, the frequency 
components form a harmonic series, meaning 
the frequency of each is a simple multiple of 
the lowestÑe.g., 100 Hz, 200 Hz, 300 Hz, 
and so on; 

¥ The frequency of the lowest, or fundamental, 
is equal to the reciprocal of the period of the 
waveform. Thus a waveform that repeats 
itself every 10 seconds has a fundamental of 
0.1 Hz; 

¥ The shape of the waveform determines the 
amplitude and phase of the components, while 
the length of the waveform determines the fre-
quencies of the components; 

¥ The components extend in frequency from 
the lowest (fundamental) on up to infinity. 
In practice, only components within a useful 
frequency range are calculated; 

¥ The analysis is reversible, meaning that the 
original waveform can be reconstructed with-
out loss of information. 

TH E FAST FOUR I ER T RA NSFORM 
(FFT )

Most sound analysis software relies on the Fast 
Fourier Transform, or FFTÑa computer-opti -
mized transform that works only for sampled 
waveforms, with the further restriction that the 
number of samples analyzed in a single calcula-
tion must be a power of two. The number of 
samples is known as the FFT size, and the seem-
ingly arbitrary sizes offered by sound analysis 
software (512, 1024, 2048, etc.) are all in fact 
powers of two. If the waveform being analyzed is 
shorter than the FFT size, a string of zeros must 
be added to make up the difference. 

Waveforms to be analyzed using the FFT 
algorithm must be periodic. This is not a particu-
larly stringent limit, since any waveform of finite 
length can be considered a single iteration of a 
periodic waveform. For example, a performance 
of an opera could be recorded and endlessly 
repeated. However, if a waveform does not end 
and begin at zero, there will be a discontinuity in 
the form of a vertical line created when beginning 
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and end are joined to form a periodic waveform. 
This vertical line forms a transient, which pro-
duces its own set of frequency components in the 
analysis. To avoid this situation, the two ends of 
a waveform can be brought to zero by means of a 
Òsmoothing window.Ó Smoothing windows such 
as the Bartlett, Blackman, and Hamming are 
useful when analyzing segments of an extended 
waveformÑbut at the cost of introducing some 
artifacts into the results. Fortunately, impulse 
measurements begin and end at something very 
close to zero (depending on noise levels), and so 
do not require smoothing windows. (Note that 
in a software menu, choosing a ÒuniformÓ or 
ÒrectangularÓ window is equivalent to choosing 
no window.) 

If we think of the frequency components 
as pixels that together form an image of the 
violinÕs sound output, the more pixels there are, 
the more clearly will the details of the curve be 
defined. A small FFT size means widely spaced 
frequency components. For example, with a 48 
kHz sampling rate, an FFT size of 2048 has fre-
quency components every 23.438 Hz, and thus 
a Òfrequency resolutionÓ of 23.438 Hz. This is 
clearly insufficient to accurately delineate a peak 
at 280 Hz (for example). On the other hand, an 
FFT size of 32,768 has a frequency resolution 
of 1.465 Hz, and so could define the peak much 
more precisely. 

The results of an FFT come in two parts: 
magnitude and phase. The magnitude, which 
gives the strength of each frequency compo-
nent, is typically plotted against frequency as a 
spectrum, using either a linear or decibel scale 
for magnitude. Spectrum and phase together 
form the complex spectrum, which is a complete 
description of the original waveform. An inverse 
FFT allows the complex spectrum to be trans-
formed back into the original waveform without 
loss of information (other than very small errors 
due to the rounding of decimal places). The 
spectrum and phase are usually presented as two 
graphs, with phase placed directly beneath mag-
nitude spectrum, as in Fig. 6. 

CH OOSIN G FFT  SI ZE

The usual strategy in analyzing an impact ham-
mer measurement is to take the signals associ-
ated with a single impact and analyze them with 
a single FFT. For this to work, it is crucial that 
the total number of samples in the measurement 
signal (beginning with the silence just before 
the hammer blow, and ending after the violinÕs 
response has died away) is smaller than the FFT 
size. The FFT size and the sampling rate together 
define a Òtime window.Ó Calculated by divid-
ing the FFT size by the sampling rate, the time 
window is simply the length of time spanned 

Figure 6. Cardioid (red curve) and omni (blue curve) microphones at 37 cm from 
the central axis of a typical violin, directly in front of the bridge. Note the somewhat 
smoother curve with the cardioid, which detects fewer room reflections. 
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by a single FFT at the chosen sampling rate. At 
48 kHz, for example, an FFT size of 16,384 has 
a time window of ~0.341 second. This is quite 
long enough for a violin with damped strings. 
With strings undamped, a larger FFT size must 
be chosen.

The FFT size is typically selected from a 
software menu. There is no problem with choos-
ing larger sizes, except that calculation times 
are longer. An FFT size of 32,758 gives a time 
window of ~0.7 seconds and a frequency resolu-
tion of ~1.5 Hz. An FFT size of 1,048,576 gives 
a frequency resolution of ~0.05 Hz and a time 
window of nearly 22 seconds. 

FREQUENC Y RESPONSE

Frequency response is a general term for how a 
systemÕs response varies with frequency. Audio 
amplifiers strive for the flattest possible fre-
quency response. The violin, by contrast, has a 
very jagged oneÑand this goes to the heart of 
its character as a musical instrument. Frequency 
response is measured by dividing the output of 
a system by its input. This gives a record of the 
output per-unit-input  across the frequency range 
of interest. 

While the input and output of an amplifier 
are clearly defined, the situation is more com-
plicated for a violin. The bridge is the obvious 
input for the ÒsignalÓ from the bowed string. 
And yet each string notch is at a slightly dif-
ferent location. Furthermore, the string applies 
forces in three directions: mainly laterally (i.e., 
side to side in the plane of the bridge), but also 
vertically, and to some degree longitudinally, i.e., 
pulling the bridge toward and away from the fin -
gerboard. Since each of the four string notches 
has these three degrees of freedom, a complete 
monitoring of the string signal would require 12 
separate channels. In practice, a single, lateral 
excitation force is typically applied, as this is the 
best single-channel approximation of the direc-
tion of the string forces. That said, including 
vertical and perhaps out-of-plane excitation in 
a measurement cycle would undoubtedly lead to 
a more complete characterization of the instru-
mentÕs radiativity. 

A violinÕs output is even more complicated 
than its input. Though the instrument radiates 
more-or-less omnidirectionally (i.e., with equal 

strength in all directions) at low frequencies, 
above ~850 Hz radiation becomes increasingly 
directional, so that at high frequencies the sound 
field consists of numerous ÒquillsÓ or ÒbeamsÓ 
of sound, whose directions can change radically 
with small changes in frequency. (For more on 
this, see Weinreich [3].) Clearly, a large number 
of microphone positions would be needed for a 
detailed record of the sound field. 

All of the above makes it virtually impos-
sible to chart a violinÕs frequency response in 
a comprehensive way. Instead, researchers rely 
on more specific and limited measurements 
known as frequency response functions, or 
FRFs. An FRF is a response curve whose input 
and output conditions are carefully described. 
For our purposes, an FRF typically represents 
the sound pressure at a particular microphone 
position in response to a lateral force at the bass 
corner of the bridge. An FRF can be thought of 
as a snapshotÑas one particular view of a three-
dimensional landscape. By taking measurements 
at a number of different microphone positions, 
a more-or-less detailed picture of the total sound 
field can be developed. 

T RA NSFER FUNC T I ON

Assuming a satisfactory hammer and micro-
phone signal have been acquired, the two signals 
must be processed in order to yield a single FRF. 
This is done by means of a transfer function. 
When the software divides the complex spec-
trum of the microphone signal by the complex 
spectrum of the hammer signal, the result is a 
complex transfer function, which contains both 
the magnitude and phase of the frequency com-
ponents. (Note that for presentation purposes, 
the phase plot is often omitted and the spectrum 
shown on its own.) When the phase information 
is left out of the transfer function calculation, the 
result is a real transfer function, which can differ 
markedly from its complex counterpart due to 
cancellations resulting from phase differences. 

Many free or inexpensive sound analysis 
programs will perform FFTs on a single channel. 
A transfer function requires software capable of 
handling at least two channels simultaneously. A 
menu typically gives a choice of which channel is 
to be divided by which. Thus if the microphone 
goes into the left channel and the hammer into 
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the right, a left-over-right transfer function must 
be selected. The beauty of a transfer function 
is that, within certain practical limits, hammer 
blows of different strengths and spectral content 
will all produce the same results.

PLOTT IN G FREQUENC Y 
RESPONSE FUNC T I ONS

In plotting FRFs, amplitude is usually assigned 
to the vertical (y) axis, and frequency to the 
horizontal (x) axis. Either linear or logarithmic 
scales can be used. With a linear amplitude scale, 
doubling the amplitude of the signal doubles the 
height of the curve. With a logarithmic scale, 
doubling the amplitude raises the curve by 6 
dB. This produces a more compact graphÑand 
one that roughly mimics our subjective sense of 
loudness. Frequency can also be plotted linearly 
or logarithmically. With a linear scale, each kilo-
hertz is given equal space. With a logarithmic 
scale, each octave is given equal spaceÑjust as 

it is on the piano keyboard. Figure 7 presents 
the sound spectrum (amplitude and phase) of a 
typical violin.

The jaggedness of a violinÕs response curves 
makes it difficult to assess how much energy 
is concentrated in a given frequency band. To 
facilitate this, the spectrum can be broken down 
into a number of bands, and the average energy 
in each band calculatedÑa process known as 
band averaging.

Acousticians have long employed third-
octave bands. While the human ear is capable 
of the subtlest discrimination in the pitch of a 
note, third-octave bands roughly capture the 
resolution with which the ear perceives tone 
color. Third-octave bands can be plotted as bar 
graphsÑwhere the height of each bar repre-
sents the average amplitude of the signal in that 
bandÑor as a smooth curve, as in Fig. 8. Though 
much detail is lost, a good sense of the general 
distribution of energy is obtained. 

The band-averaging method that best reflects 

Figure 7. The spectrum (amplitude and phase) of the sound output of a typical vio-
lin, measured in an anechoic chamber. The units of the amplitude (upper) and phase 
(lower) graphs are dB and degrees. An impact hammer tapped the bass corner of 
the bridge. The microphone was positioned 37 cm from the violinÕs central axis. The 
vertical discontinuities in the phase plot, while suggesting sudden jumps in phase, 
are in fact artifacts of the scaling. For example, a jump from to -179¡ to +180¡ 
represents a shift of just 1¡. 
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our current understanding of the hearing process 
is the Bark Scale, which divides the audible range 
into the following bands (in Hertz): 0 Ð 100 Ð 
200 Ð 300 Ð 400 Ð 510 Ð 630 Ð 770 Ð 920 Ð 1,080 
Ð 1,270 Ð 1,480 Ð 1,720 Ð 2,000 Ð 2,320 Ð 2,700 
Ð 3,150 Ð 3,700 Ð 4,400 Ð 5,300 Ð 6,400 Ð 7,700 
Ð 9,500 Ð 12,000 Ð 15,500. These bandwidths 
are based on psychoacoustic studies of human 
hearing and are intended as a refinement of the 
1/3-octave approach.

There are many other ways to create band 
averages, including one-octave and 1/6-octave 
bands. George Bissinger, in his VIOCADEUS 
project [4], uses 250-Hz band averages across 
the violinÕs entire range. It would be a mistake 
to assume that two instruments with identical 
band averages would sound the same. Consider, 
for example, that one instrument might have a 
much less peaky response curve than another, 
and yet have the same amount of energy in each 
frequency band. 

I MPUL SE MEA SURE M EN T S 

If the bridge is tapped sideways, the resulting 
sound will contain contributions from all the 
instrumentÕs vibrational modesÑor at least those 
which radiate sound, are within the hammerÕs 
frequency range, and can be excited by side-to-
side motions of the bridge. Similarly, a vertical 

blow to the top of the bridge excites those modes 
which can be excited by a vertical force. 

Figure 9 shows the hammer and micro-
phone signals for a single impact to the bass 
corner of the bridge of a typical violin (with 
strings damped). The hammer signal rises from 
zero to full value and then falls to zero again in 
about half a millisecond. The microphone signal 
rises quickly and then falls exponentially, taking 
~0.125 sec. to fall below the noise floor. 

In Fig. 10 a delay of about a millisecond 
between the beginning of the hammer signal 
and the beginning of the microphone signal 
represents the time taken for the sound waves to 
travel the ~34 cm between the violin and micro-
phone. 

Figure 11 shows a typical measurement 
cycle, consisting of four impacts at each of 12 
microphone positions. At position one, the 
microphone is directly in front of the bridge and 
37 cm from the central axis of the instrument. 
For each subsequent position, the instrument is 
rotated by 30¡ with respect to the microphone. A 
complex average of the impacts at each position 
yields a single measurement in which random 
noise has to some extent been averaged out. 

I MPUL SE RESPONSE

For measurement purposes, the term impulse 

Figure 8. The smooth line represents 1/3-octave band averaging of the jagged spec-
tral curve of a typical violin. The band average gives a better sense of the amount of 
energy in each frequency band. 
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Figure 9. Signals from hammer (below) and microphone (above) for a single impact. 
The impact is about half a millisecond in length, while the response of the instru-
ment (with its strings damped) sinks below the noise floor within ~0.125 second.

Figure 10. Close-up of hammer and microphone signals from Fig. 9. The ~1-ms 
delay between the beginnings of the hammer and microphone signals represents the 
time taken for the sound waves to travel the ~34-cm distance between violin and 
microphone. 
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refers to a large force delivered over a very short 
time period. The term impulse response refers to 
a systemÕs response to a perfect impulse. Physi-
cists define a perfect impulse (known as a Dirac 
or delta function) as one that is infinitely short 
in duration and whose amplitude is infinite, so 
as to have an area of one unit (see Appendix 
B). In terms of digital signals, infinitely short  
means less the length of a single sample, and 
infinite amplitude  means the maximum that can 
be captured by the chosen sampling depth. For 
our purposes, then, an impulse response can be 
thought of as the sound that would be made if 
the violin were tapped with an impact shorter 
than one sample, and with sufficient force for the 
hammer signal to reach the maximum value on 
the amplitude scale. Because this is not feasible 
in practice, an impulse response is calculated by 
comparing the hammer and microphone signals, 
as described below. 

It happens that an infinitely short impulse 
contains an equal amount of energy at all fre-
quencies, meaning that an instrumentÕs impulse 
response is the precise equivalent to its frequen-
cy response. But where a frequency response 
function describes the instrumentÕs behavior in 
the frequency domain (i.e., as amplitude plotted 
against frequency), an impulse response gives 
exactly the same information in the time domain 

(amplitude against time). An impulse response 
can therefore be calculated by taking the com-
plex spectrum provided by the transfer function 
between microphone and hammer, and then 
translating this back into the time domain using 
an inverse FFT. 

Because an impact hammer delivers a rela-
tively short impulse, the unprocessed micro-
phone signal tends to resemble the calculated 
impulse response. Note, however, that an impulse 
response can be derived from any measurement 
system, whether it relies on impulse excitation 
or not. All that is necessary is that there is an 
accurate record of both input force and output 
response, and that the excitation force contains 
a reasonable amount of energy across the fre-
quency range of interest. 

HA MM ER SPECTRU M

If an impact hammer could deliver a blow short-
er in length than a single sample, then it would 
contain equal amounts of energy at all frequen-
cies within the range defined by the sampling 
rate. In practice, a blow of this brevity would 
require both hammer and bridge to be very hard 
indeed. The reason becomes clear if we imagine 
the converseÑa hammer tip in the form of a soft 
spring. Upon impact, the spring would compress 
and rebound only gradually, thus prolonging the 

Figure 11. A typical measurement cycle, consisting of four impacts at each of 12 
microphone positions. Taking the complex average of the impacts for each posi-
tion tends to cancel out random noise, yielding a single frequency response function 
(FRF) for each position. 
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contact between hammer and bridge. The result 
would be a reduction of the high-frequency 
content in the excitation force, and therefore in 
the sound produced. To demonstrate this, tap 
a tabletop with your fingertip, and then with a 
house key. The brighter click made by the key 
indicates the greater high-frequency content. 

All of this is in a sense moot, for as long as 
the sensor in the hammer gives an accurate his-
tory of the changing force between hammer and 
bridge, any unevenness in the frequency content 
of the impact can be accounted for in the analysis 
process. If, however, the hammer signal contains 
very little energy above, letÕs say, 2 kHz, then the 
instrument will be only weakly excited at higher 
frequencies. The resulting sound levels will be so 
low they tend to get lost in background sounds. 
For this reason, a relatively hard hammer tip is 
required. 

Practically speaking, by varying the hard-
ness of the hammer tip, the energy in the impact 
can be either distributed over a wide frequency 
band (hard tip) or concentrated at relatively low 
frequencies (soft tip). A problem with very hard 
tips is the possibility of damaging the bridgeÑ
indeed, the pointed metal tip of the smallest 
PCB impact hammer leaves a visible dent. A 
second consideration is the increased possibility 
of double bounces, discussed below. A tip made 
from high-molecular-density polyethyleneÑthe 
white, translucent polymer much used in kitchen 

cutting boardsÑworks well. It is softer than 
the hammerÕs metal tip, harder than the PCB 
hammerÕs soft tip, and gives good data up to ~9 
kHz. Figure 12 shows spectra for soft, medium, 
and hard tips when used to strike a massive 
metal block. When tapping a violin bridge, the 
relative softness of the maple comes into play, 
and so using tips harder than the polymer does 
not much improve the frequency range. To get 
around this, one could perhaps attach a tiny 
piece of hard material to the bridge at the point 
of impact, although I have not yet tried this.

D OU BLE BOU NC ES

A double bounce occurs when the bridge deflects 
in response to an impact, but then rebounds 
toward the retreating hammer and catches up 
with it, causing a second collision. Because this 
can happen within milliseconds, double bounces 
are often difficult to hear. Figure 13 shows the 
hammer signal for a small double bounce. The 
initial peak falls to zero (indicating loss of con-
tact between hammer and bridge), but then rises 
again to form a secondary peak.

Double bounces are treated with great sus-
picion by many researchers, and so it is useful to 
understand the circumstances under which they 
can be a problem. If the hammer signal is plotted 
in the frequency domain, a double bounce shows 
up as an oscillation in the response curve, as in 

Figure 12. Hammer spectra using soft, medium, and hard hammer tips against a 
massive metal block. Upper curve: PCB metal tip; middle curve: custom polymer tip; 
bottom curve: PCB soft (red) tip. (Note: the cut-off at 20 kHz is due to the sampling 
rate, not the hammer tip.) 
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Fig. 8. If the second bounce were as strong as the 
first, the oscillation would swing down to zero. 
The smaller the second bounce compared with 
the first, the smaller the oscillation. Providing 
that even the lowest dip is well above the noise 
floor in the frequency range of interest, there 
is no problem. If, however, a dip drops to the 
level of the noise floor, then the results at that 
frequency will be unreliable. There is only one 
other case where a double bounce is a problem, 
and that is when the second bounce and/or the 
instrumentÕs response fall outside of the time 
window of the chosen FFT. In all other cases, as 
Gabriel Weinreich demonstrates in Appendix B, 
a double or even triple bounce will yield exactly 
the same results as a single bounce. 

NO ISE

Both electronic noise and noise from the envi-
ronment need to be dealt with. Electrical noise 
is most problematic at early stages of amplifica-
tion, prior to analog/digital conversion. Micro -
phones use shielded cables and balanced outputs 
to screen out most electrical noise. For relatively 
short cable lengths, this works very well. The 
interior of a computer tends to be electrically 
noisy, and so outboard sound cards (typically 
connected by USB or Firewire interfaces) are 
generally preferred to those installed inside the 
computer. Environmental noise can be mini-
mized by turning off heating, air conditioning, 

fluorescent lights, computer fans, telephones, 
etc., and otherwise using a quiet room for mea-
surements. In general, the effects of random 
noise on a measurement can be reduced by: 

¥ Driving the bridge as hard as possible without 
overloading the hammer sensor;

¥ Adjusting the gain on both hammer and micro-
phone so that their signals are, for the loudest 
anticipated blows, just shy of an overload;

¥ Averaging the results from many impacts. If 
the complex average (which takes phase into 
account) is taken for all the impacts at each 
microphone position, random noise tends to 
be averaged out. The cancellation effect is pro-
portional to the square root of the number of 
measurements used. Thus, averaging 16 sepa-
rate hammer blows will tend to reduce noise 
by a factor of four; 

¥ Removing the Òdead timeÓ between impacts. 
Because the impulse response of a violin is 
relatively short, the time between individual 
impacts (with its associated noise) tends to 
far exceed the time periods of interest. To 
improve the signal-to-noise ratio, this dead 
time is usually avoided by triggering, which 
typically works as follows: A trigger in the 
software menu is set so that when the hammer 
signal reaches, letÕs say, 10% of its maximum 
possible value, the processor begins the mea-
surement. First, it backtracks a chosen number 
of samples, e.g., 40, to ensure that the entire 

Figure 13. Hammer signal from a double bounce in time domain (below) and 
frequency domain (above), showing the characteristic oscillation in the hammer 
spectrum.
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hammer signal is included. A single FFT of 
sufficient size to capture both the impact and 
response is then calculated, after which the 
trigger resets itself. Triggering can be done 
during acquisition of the original signal, or lat -
er using a recording of the entire measurement 
cycle. Triggering during acquisition ensures 
much smaller files. Post-measurement trigger-
ing means that a record of the time between 
impacts is retained, and this is sometimes use-
ful for assessing background noise and room 
acoustics. 

COH ERENC E 

Both random noise and tiny drifts in the mea-
surement conditions ensure that even nominally 
identical measurements yield slightly different 
results. A way of testing the consistency of a 
measurement series is to have the software com-
pute a coherence function. The lower graph in 
Fig. 14 is a coherence function for a series of 
hammer blows at a single microphone position. 
If the measurements were all identical, they 
would have a coherence value of 1.0 across the 
whole frequency range. As it is, much of the 
range is close to one, but with ÒiciclesÓ here and 
there of lower coherence. These icicles tend to 
coincide with valleys in the FRF, where the rela-

tively low amplitude levels allow random noise 
to significantly influence the measurements, and 
thus reduce the coherence between them. For the 
same reason, the drop off in excitation level with 
increasing frequency (due to the relative softness 
of the hammer tip) leads to a corresponding drop 
in coherence. Generally speaking, coherence is 
an indication of the quality of the measurement. 

ROOM  AC OU ST ICS A N D M IC RO-
PH ON E DIS TA NC E

Room acoustics are probably the biggest obsta-
cle to clean measurements. One solution is to 
build some approximation of an anechoic cham-
ber. Something the size of a pantry or walk-in 
closet works for violins and violas. An alterna-
tive approach is to hang absorbent materials 
in a kind of tent around the measurement area. 
Irregular objects such as furniture and wall 
hangings help in diffusing wall-reflections, and 
specially designed diffusers and absorbers can 
be made or bought. Generally speaking, the 
larger and less reverberant the room, the better 
it is for measurement purposes. For an excellent 
nontechnical account of room acoustics, includ-
ing sound adsorption and diffusion methods and 
materials, see Ref. [5]. 

Figure 15 compares a single violin measured 

Figure 14. Frequency response function (above) and coherence function (below) for 
a series of impacts at a single microphone position. 
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in an anechoic chamber (red line) and a relatively 
small, relatively reverberant room (blue line). 

Schleske [1] reduces the effects of room 
acoustics by rotating both microphone and 
instrument with respect to the room. This tends 
to average out some of the room modes. He finds 
that the complex average of 20 readings taken at 
18¼ increments gives reasonably repeatable mea-
surements from one room to another. 

The closer the microphone is to the instru-
ment, the greater the proportion of the sound 
being measured will be coming directly from the 
instrument, rather than from room reflections. 
Close microphone positions therefore lessen the 
influence of room acoustics and environmental 
noise. On the other hand, to be sure that we are 
measuring sound that actually reaches the so-
called far field, the microphone distance should 
ideally be at least one wavelength of the lowest 
frequency being measured. As violins and violas 
do not radiate much below about 200 Hz, this 
means ~1.7 meters. While feasible in an anechoic 
chamber, this kind of microphone distance in a 
normal environment would mean prohibitive 
levels of reflected sound and room noise. Clearly, 
a compromise must be struck.

Schleske finds that 50 cm in a workshop 
setting is adequate to avoid most near-field can-
cellation. George Bissinger uses a distance of 1.2 

meters (from the surface of the top) when mea-
suring violins in an anechoic chamber, but moves 
in to 30 cm when working outside the chamber. 
I have used 37 cm from the central axis of the 
instrument as the default microphone position. 
More recently I have moved this up to 20 cm 
from the center. 

Figure 16 compares measurements taken in 
my workshop (a relatively live room of about 
24 ft x 30 ft) using microphone distances of 
55, 37, 20, and 15 cm. Finding the optimum 
microphone distance should be governed by the 
particular aspects of the sound being studied. 
For example, when trying to measure what the 
violinist hears while playing the instrument, it 
makes sense to locate the microphone about 
where the violinistÕs left ear would be.

DI RECT I ON AL I TY

Because of the violinÕs directional characteris-
tics, a number of readings must be taken around 
the instrument in order to get a reliable assess-
ment of total radiation. Bissinger [4] uses 266, 
arranged spherically in an anechoic chamber. 
Langhoff [6] found that eight microphone posi-
tions provided a good estimate of total radia-
tion. (By way of confirmation, the instrument 
was rotated with respect to those positions, 

Figure 15. A single violin measured in an anechoic chamber (red curve) and in a rela-
tively small, reverberant room (blue curve). The microphone distance for both was 
37 cm from the instrumentÕs central axis. The graphs represent the average magni-
tude of all 12 microphone positions.
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and the average signal did not change by more 
than 1 dB.) Schleske finds that the average of 
six readings, taken at 30¡ intervals around the 
instrument, in plane with the bridge, gives a rea-
sonable estimate. (For a full measurement cycle, 
he does each of these six readings 20 timesÑ
rotating both microphone and instrument with 
respect to the room, as described aboveÑfor a 
total of 120 individual measurements.) 

I have found that a single reading taken 
directly in front of the bridge gives a useful indi-
cation of an instrumentÕs behavior up to ~800 
Hz. To get a better sense of what is happening 
at higher frequencies, I have followed Schleske 
in using 12 positions, spaced evenly around 
the instrument in the plane of the bridge. How 
adequate is this as an estimate of total sound 
output? It is probably very good below ~850 
Hz, where omnidirectional radiation predomi -
nates. More testing is needed to determine the 
adequacy at higher frequencies. 

SAMPLE MEA SURE M EN T S

The measurements cited below are all for a 
single, good-quality, modern violin with its 
strings damped. Measurements were done in an 
anechoic chamber, and 12 microphone positions 
were used, as described above. The microphone 
distance was 37 cm from the central axis. 

Figure 17 shows all 12 positions averaged in 

two different ways. The line that starts dropping 
in level at ~1 kHz is the complex average for all 
12 positions. This gives an estimate of the mono-
pole radiationÑi.e., the omnidirectional com -
ponent of the total sound radiation. Monopole 
radiation clearly predominates below ~1 kHz. 
The other line is the average magnitude for all 12 
positions. This provides an estimate of the total 
sound radiated in the plane of the bridge. Above 
~1 kHz, monopole radiation for this violin is 
~10 dB below the total (multipole) radiation.

Figure 18 shows an overlay of five micro-
phone positionsÑone directly in front, the oth -
ers at 30¡ and 60¡ to either side. Though there 
is good correspondence at low frequencies, the 
spread above ~1 kHz indicates radiation pat-
terns that change significantly with frequency.

Figure 19 gives the average magnitude of 
five front and five rear microphone positions. 
At high frequencies the sound is radiated mainly 
forward from the instrument. The difference in 
the levels of the A0 peak (280 Hz) are due to the 
close position of the microphone relative to the 
acoustic center of the A0 mode, which is slightly 
in front of the f-holes. 

There are many ways of deriving single 
response curves from multiple readings. The 
upper graph in Fig. 20 shows the average magni-
tude for all 12 microphone positions, while the 
second graph shows a single, front-central posi-
tion. Which curve better represents the sound of 

Figure 16. Measurements made at a single microphone angle (directly in front of the 
bridge), but at varying distances from the central axis of the violin. Red curve: 15 
cm, magenta: 20 cm, blue: 37 cm; and light blue: 55 cm. 
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Figure 17. Estimated total radiation (upper curve) and monopole radiation (lower 
curve). The first was arrived at by taking the average magnitude for 12 microphone 
positions, and the second by the complex average, which allows for cancellation due 
to phase differences.

Figure 18. Overlay of five front microphone positions.

the instrument? 
The averaged (top) measurement provides 

an estimate of the total radiated soundÑassum-
ing that radiation in the plane of the bridge is 
representative. While its overall shape is similar 
to the single-microphone measurement, note 
that above 1 kHz, the peak-to-valley heights are 
far less, having been smoothed over in the aver-
aging process. The pronounced ÒspikinessÓ of 
the single-microphone measurement reflects an 
important aspect of the instrumentÕs sound. 

The single-microphone measurement rep-
resents what might be heard by listening with 
one ear held 37 cm from a violin suspended in 
an anechoic chamber. This is further away than 
the violinistÕs ear, but much closer than a typical 

listenerÕsÑthough neither player nor listener 
is likely to be found in an anechoic chamber! 
Without further laboring the point, there is no 
single radiation measurement that fully captures 
the sound of a violin. The meaningfulness of any 
particular measurement depends on how well 
the measurement conditions are specified. The 
usefulness depends on how much light is shed on 
the question at hand.
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Figure 19. The average magnitude of five front (upper curve) and five rear micro-
phone positions (lower curve). This shows that at high frequencies the sound is 
radiated mainly forward from the instrument. 

Figure 20. The top graph shows the average magnitude for 12 microphone positions. 
The graph below shows the magnitude for a single, front-center microphone position.
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APPEN D IX  A : Hardware

Listed below is the hardware used in the rig 
described above, along with associated software 
and electronics. 

Impact hammer: PCB Force Hammer (Model 
086C80) & power supply (e.g., Model 480E09). 
Total cost: ~$1,200 at time of printing. A vari -
ety of power supplies are available, including 
a rechargeable one, which is useful as battery 
changes are inconvenient with their design. 
They also offer a 2-channel USB-powered unit. 
Though small and very convenient, it is notice-

ably noisier than battery-powered versions. 
Sound card: I use the Edirol UA25 (~$225) USB 
audio interface. Like most others of its kind, it 
has two channels, provides the phantom power 
and pre-amps needed by condenser micro-
phones, is small and portable, and is powered by 
the computer via the USB connection. Therefore, 
a separate power supply is not needed. Many 
good-quality external sound cards are available. 
Some use a FireWire interface, which is more 
common on Mac computers than PCs. 

X-Y-Z Axis Metric Stage: Available from Edmond 
Optics, Stock No. K6-041, current price ~$490.

Microphone: I have used an Earthworks SR77 
calibrated small-diaphragm cardioid condenser 
microphone, priced at ~$880. Many less-expen-
sive microphones also will work fine. Note 
that omnidirectional microphones are usually 
recommended for measurement purposes (see 
section above on microphones). 

Pro-audio speaker stand: Ultimate Support, mod-
el TS 80B, 1-1/2″ shaft: ~$80. For added porta-
bility, use lightweight camera tripod legs, such 
as Velbon 540A graphite tripod legs, ~$275. 
The unit is incredibly light at 2.7 lb, and it folds 
down to 16.5″. 

Software: SpectraPlusTM  acoustical analysis 
software [7]. The 6-option package is recom-
mended ($995) or the full 10 options ($1,295). 
An alternative, lower-priced, and in many ways 
preferable software is that written by George 
Stoppani; see <www.stoppani.co.uk>.

APPEN D IX  B: The Double Bounce in 
Impact Hammer Measurements

As described in this paper, a standard way to 
obtain the radiativity impulse response of a 
violin is to use an impact hammer to exert a side-
ways impulsive force on the bridge (mimicking 
the approximate direction of the force exerted 
by the bowed vibrating string) and record the 
signal from a microphone located in a standard-
ized position (for example, at a distance of 30 cm 
above the bridge in a direction perpendicular to 
the plane of the violin). If the impact of the ham-
mer were truly impulsive (that is, zero length in 
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time; or, for a sampled signal, limited to a single 
sample), the unprocessed microphone signal 
would immediately yield the desired impulse 
response. In reality, however, the impact lasts 
more than one sample, often even showing more 
than one peak. The exact shape of the impact 
is given to us by the output of the piezoelectric 
sensor in the tip of the hammer. Thus, the experi-
mental data consist of two sampled signals: the 
hammer impact, lasting perhaps 1 ms or some-
what more, and the microphone signal which, 
even if the open strings are damped, still lasts an 
appreciable fraction of a second.

SAMPLE RESULT S 

The following examples are not, strictly speak-
ing, experimental in the physical sense. Rather, 
they are obtained by first inventing a numeri-
cal form for a possible impulse response; then 
inventing various possible hammer signals; and 
finally computing the corresponding expected 
microphone signals by an actual point-by-point 
convolution, without using any FFT shortcuts. 
We then try to recover the original impulse 
response. If our mathematics is correct, the 
recovery should be perfect, except for small 
deviations due to the accumulation of rounding-
off errors. 

Figure 21 shows the layout for this and all 
successive pictures: the right half is the assumed 
impulse response; the left shows the assumed 
hammer and microphone signals (in this pic-
ture, there are none). In this imagined case, 
this impulse response has the simple shape of a 
damped sine function, except that in the begin-
ning there is a distinct delay due to the transit 
time of the acoustic pulse from the violin to the 
microphone. (As a rule of thumb, sound travels 
through air with a speed of ~1 millisecond per 
foot.)

Figure 22 shows, in the left pane, an assumed 
hammer signal (green) and the resulting micro-
phone signal (red), computed by point-by-point 
convolution. The (green) hammer signal is par-
ticularly simple here, being a single-sample 
impulse; as a result, the microphone signal is 
identical to the impulse response, except that it is 
timed relative to the hammer signal and slightly 
diminished in amplitude by the same factor by 
which the green impulse fails to reach the top of 

the diagram.
We next ask to compute the impulse response 

back from the red and green curves considered 
as measured data, without taking advantage of 
the hammer signal being a perfect impulse, and 
realizing that the point-by-point convolution is 
not only laborious, but it leads to no direct way 
of being reversed. At this point we can, however, 
make good use of the passage from time domain 
to frequency domain. The logic is the following: 
in the frequency domain, the microphone signal 
M(f) has a component at frequency f, which 
is a simple product of the hammer signal H(f)  
component at that frequency and the impulse 
response component IR(f)  at that frequency:

M(f) = H(f) ¥ IR(f) .                       (1)

This equation can be solved for IR simply by 
dividing both sides by H(f) :

IR(f) = M(f) Ö H(f) .                       (2)

By using three FFTsÑone to obtain M(f), 
the second to obtain H(f),  and the third to trans-
form M/H  back to the time domainÑwe get 
the impulse response, which we pretended not 
to know. What we did in Fig. 2 is to plot it as a 
light blue curve right on top of the black curve 
shown in Fig. 1. The fact that no black shows 
through demonstrates that any mathematical 
error involved in this computation is less than 
the thickness of the curve.

Figure 23 shows a situation similar to Fig. 2, 
but with the hammer impulse coming at a later 
time, so that its tail does not fit into the region 
covered by the FFT. The computed impulse 
response (still light blue) begins correctly, but 
becomes suddenly zero where the red curve ends. 
The light blue curve then jumps to the x-axis, 
making the black ÒoriginalÓ visible until it, too, 
joins the axis.

A more interesting case is when the hammer 
takes two bounces. In this case, no inversion of 
the convolution is possible directly, and the FFT 
method of deconvolution is the only one that 
works well. 

We conclude with a more complex, yet in 
practice often encountered, case in which there 
are not only two bounces but also neither bounce 
is limited to the width of a single sample (Fig. 24). 
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Figure 21. Impulse response to a hammer impact, imagined as a damped 
sine function, delayed by the transit time of the acoustic pulse from the 
violin to the microphone.

Figure 22. Single-sample hammer signal (green), the resulting microphone 
signal (red), computed by point-by-point convolution, and the computed 
impulse response (light blue).
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Figure 23. Similar situation as in Fig. 22, but with the hammer impulse 
coming at a later time.

Figure 24. Similar to Fig. 22, but a more complex case involving two 
bounces with neither bounce limited to the width of a single sample.
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As one might have expected with a little thought, 
the pattern of the red response curve is quite 
complex in the beginning, up until the moment 
when the second bounce terminates. In fact, the 
only reason it appears simple afterwards is that 
the actual impulse response is a damped sinu-
soid, and there is a mathematical theorem that 
the sum of any number of damped sinusoids all 
with the same frequency and the same damping 
is itself a damped sinusoid with that frequency 
and that damping. Had the underlying impulse 
response been more complex, the red curve in 
Fig. 24 also would have been more complex. 
And yet the problem would have yielded just as 
smoothly to the FFT method.

The readerÕs attention is especially called to 
the fact that in the last two figures the hammer 

took more than one bounce. The reason this 
happens in practice can be rather complicated, 
yet it is important to note in these examples that, 
contrary to statements that you may encounter 
in other sources, the presence of multiple bounc-
es does not make it any more difficult to obtain 
the correct impulse response.

Given experimental data from an impact 
hammer experiment, provided that the data 
have sufficient precision, it is always possible to 
obtain an impulse response by (1) taking an FFT 
of the hammer data, (2) taking an FFT of the 
microphone data, (3) doing a complex division 
of the result of (2) by the result of (1) term by 
term, or (4) doing an inverse FFT on the result of 
(3). The presence of multiple hammer impacts is 
not an obstacle to this method.


